Publications by Miguel Campercholi

  • [PDF] [DOI] M. Campercholi, M. M. Stronkowski, and D. Vaggione, “On structural completeness versus almost structural completeness problem: A discriminator varieties case study,” Logic Journal of IGPL 23 (2): 235-246 (2015).
    [Bibtex]
    @article{StrucVsAlmost,
    author = {Campercholi, Miguel and Stronkowski, Michał M. and Vaggione, Diego},
    title = {On structural completeness versus almost structural completeness problem: A discriminator varieties case study},
    volume = {23},
    number = {2},
    pages = {235-246},
    year = {2015},
    doi = {10.1093/jigpal/jzu032},
    abstract ={We study the following problem: determine which almost structurally complete quasivarieties are structurally complete. We propose a general solution to this problem and then a solution in the semisimple case. As a consequence, we obtain a characterization of structurally complete discriminator varieties. An interesting corollary in logic follows: Let L be a propositional logic/deductive system in the language with formulas for verum, which is a theorem, and falsum, which is not a theorem. Assume also that L has an adequate semantics given by a discriminator variety. Then L is structurally complete if and only if it is maximal. All such logics/deductive systems are almost structurally complete.},
    URL = {http://jigpal.oxfordjournals.org/content/23/2/235.abstract},
    eprint = {http://jigpal.oxfordjournals.org/content/23/2/235.full.pdf+html},
    journal = {Logic Journal of IGPL}
    }
  • C. Areces, M. Campercholi, D. Penazzi, and P. Sánchez Terraf, “The Lattice of Congruences of a Finite Linear Frame,” arXiv:1504.01789 (2015).
    [Bibtex]
    @ARTICLE{2015arXiv150401789A,
    author = {Areces, Carlos and Campercholi, Miguel and Penazzi, Daniel and S{\'a}nchez Terraf, Pedro},
    title = "{The Lattice of Congruences of a Finite Linear Frame}",
    journal = {ArXiv e-prints},
    archivePrefix = "arXiv",
    eprint = {1504.01789},
    primaryClass = "math.LO",
    keywords = {Mathematics - Logic, Computer Science - Logic in Computer Science, 03B45 (Primary), 06B10, 06E25, 03B70 (Secondary), F.4.1, F.1.2},
    abstract = "Let $\mathbf{F}=\left\langle F,R\right\rangle $ be a finite Kripke frame. A
    congruence of $\mathbf{F}$ is a bisimulation of $\mathbf{F}$ that is also an
    equivalence relation on F. The set of all congruences of $\mathbf{F}$ is a
    lattice under the inclusion ordering. In this article we investigate this
    lattice in the case that $\mathbf{F}$ is a finite linear frame. We give
    concrete descriptions of the join and meet of two congruences with a nontrivial
    upper bound. Through these descriptions we show that for every nontrivial
    congruence $\rho$, the interval $[\mathrm{Id_{F},\rho]}$ embeds into the
    lattice of divisors of a suitable positive integer. We also prove that any two
    congruences with a nontrivial upper bound permute.",
    year = 2015,
    month = apr,
    adsurl = {http://adsabs.harvard.edu/abs/2015arXiv150401789A},
    adsnote = {Provided by the SAO/NASA Astrophysics Data System}
    }
  • [PDF] [DOI] M. Campercholi and D. Vaggione, “Algebraic functions in quasiprimal algebras,” Math. Log. Q. 60 (3): 154-160 (2014).
    [Bibtex]
    @Article{AlgQuasi,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Algebraic functions in quasiprimal algebras}},
    FJournal = {{Mathematical Logic Quarterly (MLQ)}},
    Journal = {{Math. Log. Q.}},
    ISSN = {0942-5616; 1521-3870/e},
    Volume = {60},
    Number = {3},
    Pages = {154--160},
    Year = {2014},
    Publisher = {Wiley (Wiley-VCH), Berlin},
    Language = {English},
    DOI = {10.1002/malq.201200060},
    MSC2010 = {03}
    }
  • [PDF] [DOI] M. A. Campercholi and D. J. Vaggione, “Implicit definition of the quaternary discriminator,” Algebra Univers. 68 (1-2): 1-16 (2012).
    [Bibtex]
    @Article{QuaternaryMono.,
    Author = {Miguel A. {Campercholi} and Diego J. {Vaggione}},
    Title = {{Implicit definition of the quaternary discriminator}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {68},
    Number = {1-2},
    Pages = {1--16},
    Year = {2012},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-012-0189-9},
    MSC2010 = {08C15 08A30},
    Zbl = {1261.08003}
    }
  • [PDF] [DOI] M. Campercholi and D. Vaggione, “Algebraic functions,” Stud. Log. 98 (1-2): 285-306 (2011).
    [Bibtex]
    @Article{AlgFunc,
    Author = {M. {Campercholi} and D. {Vaggione}},
    Title = {{Algebraic functions}},
    FJournal = {{Studia Logica}},
    Journal = {{Stud. Log.}},
    ISSN = {0039-3215; 1572-8730/e},
    Volume = {98},
    Number = {1-2},
    Pages = {285--306},
    Year = {2011},
    Publisher = {Springer Netherlands, Dordrecht; Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw},
    Language = {English},
    DOI = {10.1007/s11225-011-9334-2},
    MSC2010 = {08A40 06D05 06D15 08B05 15A03 20K01},
    Zbl = {1264.08001}
    }
  • [PDF] [DOI] M. Campercholi and D. Vaggione, “Axiomatizability by ${\forall \exists!}$-sentences,” Arch. Math. Logic 50 (7-8): 713-725 (2011).
    [Bibtex]
    @Article{AEUaxiomatizability,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Axiomatizability by ${\forall \exists!}$-sentences}},
    FJournal = {{Archive for Mathematical Logic}},
    Journal = {{Arch. Math. Logic}},
    ISSN = {0933-5846; 1432-0665/e},
    Volume = {50},
    Number = {7-8},
    Pages = {713--725},
    Year = {2011},
    Publisher = {Springer, Berlin/Heidelberg},
    Language = {English},
    DOI = {10.1007/s00153-011-0244-9},
    MSC2010 = {03C40 03C05 03C07 03C13 06D35},
    Zbl = {1237.03018}
    }
  • [PDF] [DOI] M. A. Campercholi and D. J. Vaggione, “An implicit function theorem for algebraically closed fields,” Algebra Univers. 65 (3): 299-304 (2011).
    [Bibtex]
    @Article{ImplicitFields,
    Author = {Miguel A. {Campercholi} and Diego J. {Vaggione}},
    Title = {{An implicit function theorem for algebraically closed fields}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {65},
    Number = {3},
    Pages = {299--304},
    Year = {2011},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-011-0130-7},
    MSC2010 = {12E99 13P15},
    Zbl = {1254.12006}
    }
  • [DOI] M. Campercholi, D. Castaño, and J. P. {D. ‘i}az Varela, “Quasivarieties and congruence permutability of \Lukasiewicz implication algebras.,” Stud. Log. 98 (1-2): 267-283 (2011).
    [Bibtex]
    @Article{zbMATH06013470,
    Author = {M. {Campercholi} and D. {Casta\~no} and J.P. {D{\'\i}az Varela}},
    Title = {{Quasivarieties and congruence permutability of {\L}ukasiewicz implication algebras.}},
    FJournal = {{Studia Logica}},
    Journal = {{Stud. Log.}},
    ISSN = {0039-3215; 1572-8730/e},
    Volume = {98},
    Number = {1-2},
    Pages = {267--283},
    Year = {2011},
    Publisher = {Springer Netherlands, Dordrecht; Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw},
    Language = {English},
    DOI = {10.1007/s11225-011-9329-z},
    MSC2010 = {03G20 08C15},
    Zbl = {1245.03108}
    }
  • [PDF] [DOI] M. Campercholi, “Algebraically expandable classes of implication algebras.,” Int. J. Algebra Comput. 20 (5): 605-617 (2010).
    [Bibtex]
    @Article{EFDImpl,
    Author = {Miguel {Campercholi}},
    Title = {{Algebraically expandable classes of implication algebras.}},
    FJournal = {{International Journal of Algebra and Computation}},
    Journal = {{Int. J. Algebra Comput.}},
    ISSN = {0218-1967; 1793-6500/e},
    Volume = {20},
    Number = {5},
    Pages = {605--617},
    Year = {2010},
    Publisher = {World Scientific, Singapore},
    Language = {English},
    DOI = {10.1142/S0218196710005704},
    MSC2010 = {03G25 03C05 08B26},
    Zbl = {1206.03056}
    }
  • [PDF] [DOI] M. Campercholi and D. Vaggione, “Algebraically expandable classes,” Algebra Univers. 61 (2): 151-186 (2009).
    [Bibtex]
    @Article{Expandable,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Algebraically expandable classes}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {61},
    Number = {2},
    Pages = {151--186},
    Year = {2009},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-009-0008-0},
    MSC2010 = {08C10 03C40 06D30 08B10},
    Zbl = {1223.08003}
    }
  • [PDF] [DOI] M. Campercholi and D. Vaggione, “An implicit function theorem for regular fuzzy logic functions,” Fuzzy Sets Syst. 159 (22): 2983-2987 (2008).
    [Bibtex]
    @Article{ImplicitFuzzy,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{An implicit function theorem for regular fuzzy logic functions}},
    FJournal = {{Fuzzy Sets and Systems}},
    Journal = {{Fuzzy Sets Syst.}},
    ISSN = {0165-0114},
    Volume = {159},
    Number = {22},
    Pages = {2983--2987},
    Year = {2008},
    Publisher = {Elsevier (North-Holland), Amsterdam},
    Language = {English},
    DOI = {10.1016/j.fss.2008.03.007},
    MSC2010 = {03B52},
    Zbl = {1175.03014}
    }
  • [PDF] M. Campercholi and D. Vaggione, “A note on congruence systems of MS-algebras,” Math. Bohem. 132 (4): 337-343 (2007).
    [Bibtex]
    @Article{MSConSystems,
    Author = {M. {Campercholi} and D. {Vaggione}},
    Title = {{A note on congruence systems of MS-algebras}},
    FJournal = {{Mathematica Bohemica}},
    Journal = {{Math. Bohem.}},
    ISSN = {0862-7959},
    Volume = {132},
    Number = {4},
    Pages = {337--343},
    Year = {2007},
    Publisher = {Academy of Sciences of the Czech Republic, Mathematical Institute, Prague},
    Language = {English},
    MSC2010 = {06D30},
    Zbl = {1174.06312}
    }
  • [PDF] [DOI] M. Campercholi and D. Vaggione, “Congruence permutable MS-algebras,” Algebra Univers. 56 (2): 119-131 (2007).
    [Bibtex]
    @Article{PermMS,
    Author = {M. {Campercholi} and D. {Vaggione}},
    Title = {{Congruence permutable MS-algebras}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {56},
    Number = {2},
    Pages = {119--131},
    Year = {2007},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-007-1976-6},
    MSC2010 = {06D30 08B05},
    Zbl = {1116.06011}
    }
  • [PDF] [DOI] J. Blanco, M. Campercholi, and D. Vaggione, “The subquasivariety lattice of a discriminator variety,” Adv. Math. 159 (1): 18-50 (2001).
    [Bibtex]
    @Article{Subquasi,
    Author = {Javier {Blanco} and Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{The subquasivariety lattice of a discriminator variety}},
    FJournal = {{Advances in Mathematics}},
    Journal = {{Adv. Math.}},
    ISSN = {0001-8708},
    Volume = {159},
    Number = {1},
    Pages = {18--50},
    Year = {2001},
    Publisher = {Elsevier (Academic Press), San Diego, CA},
    Language = {English},
    DOI = {10.1006/aima.2000.1962},
    MSC2010 = {08B15 08C15},
    Zbl = {0984.08007}
    }