Publications by Diego Vaggione

  1. M. V. Badano and D. J. Vaggione, “Varieties with equationally definable factor congruences II,” Algebra Univers. (2017).
    [ BibTeX ]
    @Article{edfc2,
    Author = {Mariana V. {Badano} and Diego J. {Vaggione}},
    Title = {{Varieties with equationally definable factor congruences II}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Year = {2017},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    note = "In press",
    MSC2010 = {03C05 08B05 08B10}
    }

  2. M. Badano and D. Vaggione, “$\mathcal{V}_{SI}$ first order implies $\mathcal{V}_{DI}$ first order,” Acta Math. Hung. 151 (1): 47-49 (2017). [DOI]
    [ BibTeX ]
    @Article{zbMATH06707836,
    Author = {M. {Badano} and D. {Vaggione}},
    Title = {{$\mathcal{V}_{SI}$ first order implies $\mathcal{V}_{DI}$ first order}},
    FJournal = {{Acta Mathematica Hungarica}},
    Journal = {{Acta Math. Hung.}},
    ISSN = {0236-5294; 1588-2632/e},
    Volume = {151},
    Number = {1},
    Pages = {47--49},
    Year = {2017},
    Publisher = {Springer Netherlands, Dordrecht; Akad\'emiai Kiad\'o, Budapest},
    Language = {English},
    DOI = {10.1007/s10474-016-0676-0},
    MSC2010 = {08B10}
    }

  3. M. Badano and D. Vaggione, “Characterization of context-free languages,” Theor. Comput. Sci. 676: 92-96 (2017). [DOI]
    [ BibTeX ]
    @Article{zbMATH06714282,
    Author = {M. {Badano} and D. {Vaggione}},
    Title = {{Characterization of context-free languages}},
    FJournal = {{Theoretical Computer Science}},
    Journal = {{Theor. Comput. Sci.}},
    ISSN = {0304-3975},
    Volume = {676},
    Pages = {92--96},
    Year = {2017},
    Publisher = {Elsevier, Amsterdam},
    Language = {English},
    DOI = {10.1016/j.tcs.2017.03.002},
    MSC2010 = {68Q}
    }

  4. M. V. Badano and D. J. Vaggione, “Equational definability of (complementary) central elements,” Int. J. Algebra Comput. 26 (3): 509-532 (2016). [DOI]
    [ BibTeX ]
    @Article{zbMATH06596761,
    Author = {Mariana V. {Badano} and Diego J. {Vaggione}},
    Title = {{Equational definability of (complementary) central elements}},
    FJournal = {{International Journal of Algebra and Computation}},
    Journal = {{Int. J. Algebra Comput.}},
    ISSN = {0218-1967; 1793-6500/e},
    Volume = {26},
    Number = {3},
    Pages = {509--532},
    Year = {2016},
    Publisher = {World Scientific, Singapore},
    Language = {English},
    DOI = {10.1142/S0218196716500211},
    MSC2010 = {03C05 08B05}
    }

  5. M. Campercholi and D. Vaggione, “Semantical conditions for the definability of functions and relations,” Algebra Univers. 76 (1): 71-98 (2016). [DOI]
    [ BibTeX ]
    @Article{zbMATH06627402,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Semantical conditions for the definability of functions and relations}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {76},
    Number = {1},
    Pages = {71--98},
    Year = {2016},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-016-0384-1},
    MSC2010 = {03C40 08A35 08A30}
    }

  6. M. Campercholi, M. M. Stronkowski, and D. Vaggione, “On structural completeness versus almost structural completeness problem: A discriminator varieties case study,” Logic Journal of IGPL 23 (2): 235-246 (2015). [DOI]
    [ Preprint | Download PDF | Abstract | BibTeX ]

    We study the following problem: determine which almost structurally complete quasivarieties are structurally complete. We propose a general solution to this problem and then a solution in the semisimple case. As a consequence, we obtain a characterization of structurally complete discriminator varieties. An interesting corollary in logic follows: Let L be a propositional logic/deductive system in the language with formulas for verum, which is a theorem, and falsum, which is not a theorem. Assume also that L has an adequate semantics given by a discriminator variety. Then L is structurally complete if and only if it is maximal. All such logics/deductive systems are almost structurally complete.

    @article{StrucVsAlmost,
    author = {Campercholi, Miguel and Stronkowski, Michał M. and Vaggione, Diego},
    title = {On structural completeness versus almost structural completeness problem: A discriminator varieties case study},
    volume = {23},
    number = {2},
    pages = {235-246},
    year = {2015},
    doi = {10.1093/jigpal/jzu032},
    abstract ={We study the following problem: determine which almost structurally complete quasivarieties are structurally complete. We propose a general solution to this problem and then a solution in the semisimple case. As a consequence, we obtain a characterization of structurally complete discriminator varieties. An interesting corollary in logic follows: Let L be a propositional logic/deductive system in the language with formulas for verum, which is a theorem, and falsum, which is not a theorem. Assume also that L has an adequate semantics given by a discriminator variety. Then L is structurally complete if and only if it is maximal. All such logics/deductive systems are almost structurally complete.},
    URL = {http://jigpal.oxfordjournals.org/content/23/2/235.abstract},
    eprint = {http://jigpal.oxfordjournals.org/content/23/2/235.full.pdf+html},
    journal = {Logic Journal of IGPL}
    }

  7. M. Campercholi and D. Vaggione, “Algebraic functions in quasiprimal algebras,” Math. Log. Q. 60 (3): 154-160 (2014). [DOI]
    [ BibTeX ]
    @Article{zbMATH06301477,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Algebraic functions in quasiprimal algebras}},
    FJournal = {{Mathematical Logic Quarterly (MLQ)}},
    Journal = {{Math. Log. Q.}},
    ISSN = {0942-5616; 1521-3870/e},
    Volume = {60},
    Number = {3},
    Pages = {154--160},
    Year = {2014},
    Publisher = {Wiley (Wiley-VCH), Berlin},
    Language = {English},
    DOI = {10.1002/malq.201200060},
    MSC2010 = {03}
    }

  8. M. V. Badano and D. J. Vaggione, “Varieties with equationally definable factor congruences,” Algebra Univers. 70 (4): 327-345 (2013). [DOI] Zbl 1316.03018
    [ BibTeX ]
    @Article{zbMATH06280979,
    Author = {Mariana V. {Badano} and Diego J. {Vaggione}},
    Title = {{Varieties with equationally definable factor congruences}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {70},
    Number = {4},
    Pages = {327--345},
    Year = {2013},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-013-0252-1},
    MSC2010 = {03C05 08B05 08B10},
    Zbl = {1316.03018}
    }

  9. M. A. Campercholi and D. J. Vaggione, “Implicit definition of the quaternary discriminator,” Algebra Univers. 68 (1-2): 1-16 (2012). [DOI] Zbl 1261.08003
    [ BibTeX ]
    @Article{zbMATH06110487,
    Author = {Miguel A. {Campercholi} and Diego J. {Vaggione}},
    Title = {{Implicit definition of the quaternary discriminator}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {68},
    Number = {1-2},
    Pages = {1--16},
    Year = {2012},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-012-0189-9},
    MSC2010 = {08C15 08A30},
    Zbl = {1261.08003}
    }

  10. M. A. Campercholi and D. J. Vaggione, “An implicit function theorem for algebraically closed fields,” Algebra Univers. 65 (3): 299-304 (2011). [DOI] Zbl 1254.12006
    [ BibTeX ]
    @Article{zbMATH05902947,
    Author = {Miguel A. {Campercholi} and Diego J. {Vaggione}},
    Title = {{An implicit function theorem for algebraically closed fields}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {65},
    Number = {3},
    Pages = {299--304},
    Year = {2011},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-011-0130-7},
    MSC2010 = {12E99 13P15},
    Zbl = {1254.12006}
    }

  11. M. Campercholi and D. Vaggione, “Axiomatizability by ${\forall \exists!}$-sentences,” Arch. Math. Logic 50 (7-8): 713-725 (2011). [DOI] Zbl 1237.03018
    [ BibTeX ]
    @Article{zbMATH05977563,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Axiomatizability by ${\forall \exists!}$-sentences}},
    FJournal = {{Archive for Mathematical Logic}},
    Journal = {{Arch. Math. Logic}},
    ISSN = {0933-5846; 1432-0665/e},
    Volume = {50},
    Number = {7-8},
    Pages = {713--725},
    Year = {2011},
    Publisher = {Springer, Berlin/Heidelberg},
    Language = {English},
    DOI = {10.1007/s00153-011-0244-9},
    MSC2010 = {03C40 03C05 03C07 03C13 06D35},
    Zbl = {1237.03018}
    }

  12. M. Campercholi and D. Vaggione, “Algebraic functions,” Stud. Log. 98 (1-2): 285-306 (2011). [DOI] Zbl 1264.08001
    [ BibTeX ]
    @Article{zbMATH06013474,
    Author = {M. {Campercholi} and D. {Vaggione}},
    Title = {{Algebraic functions}},
    FJournal = {{Studia Logica}},
    Journal = {{Stud. Log.}},
    ISSN = {0039-3215; 1572-8730/e},
    Volume = {98},
    Number = {1-2},
    Pages = {285--306},
    Year = {2011},
    Publisher = {Springer Netherlands, Dordrecht; Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw},
    Language = {English},
    DOI = {10.1007/s11225-011-9334-2},
    MSC2010 = {08A40 06D05 06D15 08B05 15A03 20K01},
    Zbl = {1264.08001}
    }

  13. M. Campercholi and D. Vaggione, “Algebraically expandable classes,” Algebra Univers. 61 (2): 151-186 (2009). [DOI] Zbl 1223.08003
    [ BibTeX ]
    @Article{zbMATH05646234,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{Algebraically expandable classes}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {61},
    Number = {2},
    Pages = {151--186},
    Year = {2009},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-009-0008-0},
    MSC2010 = {08C10 03C40 06D30 08B10},
    Zbl = {1223.08003}
    }

  14. P. Sánchez Terraf and D. Vaggione, “Varieties with Definable Factor Congruences,” Trans. Amer. Math. Soc. 361: 5061-5088 (2009). [DOI] Zbl 1223.08001
    [ Abstract | BibTeX ]

    We study direct product representations of algebras in varieties. We collect several conditions expressing that these representations are \emph{definable} in a first-order-logic sense, among them the concept of Definable Factor Congruences (DFC). The main results are that DFC is a Mal’cev property and that it is equivalent to all other conditions formulated; in particular we prove that $\mathcal{V}$ has DFC if and only if $\mathcal{V}$ has $\vec{0}$ & $\vec{1}$ and \emph{Boolean Factor Congruences}. We also obtain an explicit first order definition $\Phi$ of the kernel of the canonical projections via the terms associated to the Mal’cev condition for DFC, in such a manner it is preserved by taking direct products and direct factors. The main tool is the use of \emph{central elements,} which are a generalization of both central idempotent elements in rings with identity and neutral complemented elements in a bounded lattice.

    @article{DFC,
    author = {S\'anchez Terraf, Pedro and Vaggione, Diego},
    title = {Varieties with Definable Factor Congruences},
    journal = {Trans. Amer. Math. Soc.},
    volume = {361},
    year = {2009},
    pages = {5061--5088},
    doi = {10.1090/S0002-9947-09-04921-6},
    abstract = {We study direct product representations of algebras in
    varieties. We collect several
    conditions expressing that these representations are \emph{definable}
    in a first-order-logic sense, among them the concept of Definable
    Factor Congruences (DFC). The main results are that DFC is a Mal'cev
    property and that it is equivalent to all other conditions
    formulated; in particular we prove that $\mathcal{V}$ has DFC if and only if
    $\mathcal{V}$ has $\vec{0}$ \& $\vec{1}$ and \emph{Boolean Factor Congruences}. We also obtain an explicit
    first order definition $\Phi$ of the kernel of the canonical projections via the terms
    associated to the Mal'cev condition for DFC, in such a manner it is preserved
    by taking direct products and direct factors. The main tool is the use
    of \emph{central elements,} which are a generalization of
    both central idempotent elements in rings with identity and neutral
    complemented elements in a bounded lattice.},
    Zbl = {1223.08001},
    MRNUMBER = {2515803}
    }

  15. D. Vaggione, “Infinitary simultaneous recursion theorem.,” Mathware Soft Comput. 15 (3): 273-283 (2008). Zbl 1167.68016
    [ Abstract | BibTeX ]

    We prove an infinitary version of the Double Recursion Theorem of Smullyan. We give some applications which show how this form of the Recursion Theorem can be naturally applied to obtain interesting infinite sequences of programs

    @Article{zbMATH05532075,
    Author = {D. {Vaggione}},
    Title = {{Infinitary simultaneous recursion theorem.}},
    FJournal = {{Mathware \& Soft Computing}},
    Journal = {{Mathware Soft Comput.}},
    ISSN = {1134-5632},
    Volume = {15},
    Number = {3},
    Pages = {273--283},
    Year = {2008},
    Publisher = {Universitat Polit\`ecnica de Catalunya, Escola T\`ecnica Superior d'Arquitectura, Secci\'o de Matem\`atiques i Inform\`atica, Barcelona},
    Language = {English},
    MSC2010 = {68N30 03D20 68N15},
    abstract = {We prove an infinitary version of the Double Recursion Theorem of Smullyan. We give some applications which show how this form of the Recursion Theorem can be naturally applied to obtain interesting infinite sequences of programs},
    Zbl = {1167.68016}
    }

  16. M. Campercholi and D. Vaggione, “An implicit function theorem for regular fuzzy logic functions,” Fuzzy Sets Syst. 159 (22): 2983-2987 (2008). [DOI] Zbl 1175.03014
    [ BibTeX ]
    @Article{zbMATH05599500,
    Author = {Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{An implicit function theorem for regular fuzzy logic functions}},
    FJournal = {{Fuzzy Sets and Systems}},
    Journal = {{Fuzzy Sets Syst.}},
    ISSN = {0165-0114},
    Volume = {159},
    Number = {22},
    Pages = {2983--2987},
    Year = {2008},
    Publisher = {Elsevier (North-Holland), Amsterdam},
    Language = {English},
    DOI = {10.1016/j.fss.2008.03.007},
    MSC2010 = {03B52},
    Zbl = {1175.03014}
    }

  17. M. Campercholi and D. Vaggione, “A note on congruence systems of MS-algebras,” Math. Bohem. 132 (4): 337-343 (2007). Zbl 1174.06312
    [ BibTeX ]
    @Article{zbMATH05538207,
    Author = {M. {Campercholi} and D. {Vaggione}},
    Title = {{A note on congruence systems of MS-algebras}},
    FJournal = {{Mathematica Bohemica}},
    Journal = {{Math. Bohem.}},
    ISSN = {0862-7959},
    Volume = {132},
    Number = {4},
    Pages = {337--343},
    Year = {2007},
    Publisher = {Academy of Sciences of the Czech Republic, Mathematical Institute, Prague},
    Language = {English},
    MSC2010 = {06D30},
    Zbl = {1174.06312}
    }

  18. M. Campercholi and D. Vaggione, “Congruence permutable MS-algebras,” Algebra Univers. 56 (2): 119-131 (2007). [DOI] Zbl 1116.06011
    [ BibTeX ]
    @Article{zbMATH05139579,
    Author = {M. {Campercholi} and D. {Vaggione}},
    Title = {{Congruence permutable MS-algebras}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {56},
    Number = {2},
    Pages = {119--131},
    Year = {2007},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s00012-007-1976-6},
    MSC2010 = {06D30 08B05},
    Zbl = {1116.06011}
    }

  19. D. Vaggione and P. Sánchez Terraf, “Compact factor congruences imply Boolean factor congruences,” Algebra univers. 51: 207-213 (2004). [DOI] Zbl 1087.08001
    [ Preprint | Abstract | BibTeX ]

    We prove that any variety $\mathcal{V}$ in which every factor congruence is compact has Boolean factor congruences, i.e., for all $A$ in $\mathcal{V}$ the set of factor congruences of A is a distributive sublattice of the congruence lattice of A.

    @article{CFC,
    author = {Vaggione, Diego and S\'anchez Terraf, Pedro},
    title = {Compact factor congruences imply {B}oolean factor congruences},
    journal = {Algebra univers. },
    abstract = {We prove that any variety $\mathcal{V}$ in which every factor congruence is compact has Boolean factor congruences, i.e., for all $A$ in $\mathcal{V}$ the set of factor congruences of A is a distributive sublattice of the congruence lattice of A.},
    volume = {51},
    year = {2004},
    pages = {207--213},
    doi = {10.1007/s00012-004-1857-1},
    Zbl = {1087.08001}
    }

  20. D. Vaggione, “Characterization of discriminator varieties.,” Proc. Am. Math. Soc. 129 (3): 663-666 (2001). [DOI] Zbl 0962.08005
    [ BibTeX ]
    @Article{zbMATH01549537,
    Author = {Diego {Vaggione}},
    Title = {{Characterization of discriminator varieties.}},
    FJournal = {{Proceedings of the American Mathematical Society}},
    Journal = {{Proc. Am. Math. Soc.}},
    ISSN = {0002-9939; 1088-6826/e},
    Volume = {129},
    Number = {3},
    Pages = {663--666},
    Year = {2001},
    Publisher = {American Mathematical Society (AMS), Providence, RI},
    Language = {English},
    DOI = {10.1090/S0002-9939-00-05627-6},
    MSC2010 = {08B25 08A05 08A30 08B10},
    Zbl = {0962.08005}
    }

  21. J. Blanco, M. Campercholi, and D. Vaggione, “The subquasivariety lattice of a discriminator variety,” Adv. Math. 159 (1): 18-50 (2001). [DOI] Zbl 0984.08007
    [ BibTeX ]
    @Article{zbMATH01598986,
    Author = {Javier {Blanco} and Miguel {Campercholi} and Diego {Vaggione}},
    Title = {{The subquasivariety lattice of a discriminator variety}},
    FJournal = {{Advances in Mathematics}},
    Journal = {{Adv. Math.}},
    ISSN = {0001-8708},
    Volume = {159},
    Number = {1},
    Pages = {18--50},
    Year = {2001},
    Publisher = {Elsevier (Academic Press), San Diego, CA},
    Language = {English},
    DOI = {10.1006/aima.2000.1962},
    MSC2010 = {08B15 08C15},
    Zbl = {0984.08007}
    }

  22. D. Vaggione, “Equational characterization of the quaternary discriminator,” Algebra Univers. 43 (1): 99-100 (2000). [DOI] Zbl 1011.08001
    [ BibTeX ]
    @Article{zbMATH01899927,
    Author = {Diego {Vaggione}},
    Title = {{Equational characterization of the quaternary discriminator}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {43},
    Number = {1},
    Pages = {99--100},
    Year = {2000},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s000120050147},
    MSC2010 = {08A30 08A40 08B05},
    Zbl = {1011.08001}
    }

  23. D. Vaggione, “Central elements in varieties with the Fraser-Horn property,” Adv. Math. 148 (2) p. 193–202, art. no. aima.1999.1855 (1999). [DOI] Zbl 0946.08002
    [ BibTeX ]
    @Article{zbMATH01415892,
    Author = {Diego {Vaggione}},
    Title = {{Central elements in varieties with the Fraser-Horn property}},
    FJournal = {{Advances in Mathematics}},
    Journal = {{Adv. Math.}},
    ISSN = {0001-8708},
    Volume = {148},
    Number = {2},
    Pages = {193--202, art. no. aima.1999.1855},
    Year = {1999},
    Publisher = {Elsevier (Academic Press), San Diego, CA},
    Language = {English},
    DOI = {10.1006/aima.1999.1855},
    MSC2010 = {08B05 08A30},
    Zbl = {0946.08002}
    }

  24. D. Vaggione, “Modular varieties with the Fraser-Horn property,” Proc. Am. Math. Soc. 127 (3): 701-708 (1999). [DOI] Zbl 0910.08003
    [ BibTeX ]
    @Article{zbMATH01245383,
    Author = {Diego {Vaggione}},
    Title = {{Modular varieties with the Fraser-Horn property}},
    FJournal = {{Proceedings of the American Mathematical Society}},
    Journal = {{Proc. Am. Math. Soc.}},
    ISSN = {0002-9939; 1088-6826/e},
    Volume = {127},
    Number = {3},
    Pages = {701--708},
    Year = {1999},
    Publisher = {American Mathematical Society (AMS), Providence, RI},
    Language = {English},
    DOI = {10.1090/S0002-9939-99-04647-X},
    MSC2010 = {08B10 08A05},
    Zbl = {0910.08003}
    }

  25. H. Gramaglia and D. Vaggione, “A note on distributive double $p$-algebras,” Czech. Math. J. 48 (2): 321-327 (1998). [DOI] Zbl 0952.06012
    [ BibTeX ]
    @Article{zbMATH01528743,
    Author = {Hector {Gramaglia} and Diego {Vaggione}},
    Title = {{A note on distributive double $p$-algebras}},
    FJournal = {{Czechoslovak Mathematical Journal}},
    Journal = {{Czech. Math. J.}},
    ISSN = {0011-4642; 1572-9141/e},
    Volume = {48},
    Number = {2},
    Pages = {321--327},
    Year = {1998},
    Publisher = {Springer, Berlin/Heidelberg},
    Language = {English},
    DOI = {10.1023/A:1022893605321},
    MSC2010 = {06D15 06B10},
    Zbl = {0952.06012}
    }

  26. D. Vaggione, “A note on sheaf representation in arithmetical varieties,” Acta Math. Hung. 75 (1-2): 23-25 (1997). [DOI] Zbl 0922.08005
    [ BibTeX ]
    @Article{zbMATH01336394,
    Author = {D. {Vaggione}},
    Title = {{A note on sheaf representation in arithmetical varieties}},
    FJournal = {{Acta Mathematica Hungarica}},
    Journal = {{Acta Math. Hung.}},
    ISSN = {0236-5294; 1588-2632/e},
    Volume = {75},
    Number = {1-2},
    Pages = {23--25},
    Year = {1997},
    Publisher = {Springer Netherlands, Dordrecht; Akad\'emiai Kiad\'o, Budapest},
    Language = {English},
    DOI = {10.1023/A:1006522532214},
    MSC2010 = {08B26 14G40},
    Zbl = {0922.08005}
    }

  27. D. Vaggione, “On the fundamental theorem of algebra,” Colloq. Math. 73 (2): 193-194 (1997). Zbl 0876.12001
    [ BibTeX ]
    @Article{zbMATH01019480,
    Author = {Diego {Vaggione}},
    Title = {{On the fundamental theorem of algebra}},
    FJournal = {{Colloquium Mathematicum}},
    Journal = {{Colloq. Math.}},
    ISSN = {0010-1354; 1730-6302/e},
    Volume = {73},
    Number = {2},
    Pages = {193--194},
    Year = {1997},
    Publisher = {Polish Academy of Sciences (Polska Akademia Nauk - PAN), Institute of Mathematics (Instytut Matematyczny), Warsaw},
    Language = {English},
    MSC2010 = {12D10},
    Zbl = {0876.12001}
    }

  28. H. Gramaglia and D. J. Vaggione, “(Finitely) subdirectly irreducible and Birkhoff-like sheaf representation for certain varieties of lattice ordered structures,” Algebra Univers. 38 (1): 56-91 (1997). [DOI] Zbl 0903.08013
    [ BibTeX ]
    @Article{zbMATH01226226,
    Author = {H. {Gramaglia} and D.J. {Vaggione}},
    Title = {{(Finitely) subdirectly irreducible and Birkhoff-like sheaf representation for certain varieties of lattice ordered structures}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {38},
    Number = {1},
    Pages = {56--91},
    Year = {1997},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/s000120050038},
    MSC2010 = {08B26 06B20 06D30 06D15},
    Zbl = {0903.08013}
    }

  29. H. Gramaglia and D. Vaggione, “Birkhoff-like sheaf representation for varieties of lattice expansions,” Stud. Log. 56 (1-2): 111-131 (1996). [DOI] Zbl 0854.08006
    [ BibTeX ]
    @Article{zbMATH00883886,
    Author = {Hector {Gramaglia} and Diego {Vaggione}},
    Title = {{Birkhoff-like sheaf representation for varieties of lattice expansions}},
    FJournal = {{Studia Logica}},
    Journal = {{Stud. Log.}},
    ISSN = {0039-3215; 1572-8730/e},
    Volume = {56},
    Number = {1-2},
    Pages = {111--131},
    Year = {1996},
    Publisher = {Springer Netherlands, Dordrecht; Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw},
    Language = {English},
    DOI = {10.1007/BF00370143},
    MSC2010 = {08B26 06B20 06D99},
    Zbl = {0854.08006}
    }

  30. D. J. Vaggione, “Varieties of shells,” Algebra Univers. 36 (4): 483-487 (1996). [DOI] Zbl 0901.08010
    [ BibTeX ]
    @Article{zbMATH01226562,
    Author = {D.J. {Vaggione}},
    Title = {{Varieties of shells}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {36},
    Number = {4},
    Pages = {483--487},
    Year = {1996},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/BF01233918},
    MSC2010 = {08B05 08A30},
    Zbl = {0901.08010}
    }

  31. D. Vaggione, “$\mathcal{V}$ with factorable congruences and $\mathcal{V}=\text{I}\Gamma^\alpha(\mathcal{V}_{DI})$ imply $\mathcal{V}$ is a discriminator variety,” Acta Sci. Math. 62 (3-4): 359-368 (1996). Zbl 0880.08007
    [ BibTeX ]
    @Article{zbMATH01101410,
    Author = {D. {Vaggione}},
    Title = {{$\mathcal{V}$ with factorable congruences and $\mathcal{V}=\text{I}\Gamma^\alpha(\mathcal{V}_{DI})$ imply $\mathcal{V}$ is a discriminator variety}},
    FJournal = {{Acta Scientiarum Mathematicarum}},
    Journal = {{Acta Sci. Math.}},
    ISSN = {0001-6969},
    Volume = {62},
    Number = {3-4},
    Pages = {359--368},
    Year = {1996},
    Publisher = {University of Szeged, Bolyai Institute, Szeged},
    Language = {English},
    MSC2010 = {08B26 08A30},
    Zbl = {0880.08007}
    }

  32. D. Vaggione, “On Jónsson’s theorem,” Math. Bohem. 121 (1): 55-58 (1996). Zbl 0863.06008
    [ BibTeX ]
    @Article{zbMATH01001199,
    Author = {Diego {Vaggione}},
    Title = {{On J\'onsson's theorem}},
    FJournal = {{Mathematica Bohemica}},
    Journal = {{Math. Bohem.}},
    ISSN = {0862-7959},
    Volume = {121},
    Number = {1},
    Pages = {55--58},
    Year = {1996},
    Publisher = {Academy of Sciences of the Czech Republic, Mathematical Institute, Prague},
    Language = {English},
    MSC2010 = {06B15 08B15 06B30 08B10},
    Zbl = {0863.06008}
    }

  33. D. Vaggione, “Definability of directly indecomposable congruence modular algebras,” Stud. Log. 57 (2-3): 239-241 (1996). [DOI] Zbl 0857.03016
    [ BibTeX ]
    @Article{zbMATH00957478,
    Author = {Diego {Vaggione}},
    Title = {{Definability of directly indecomposable congruence modular algebras}},
    FJournal = {{Studia Logica}},
    Journal = {{Stud. Log.}},
    ISSN = {0039-3215; 1572-8730/e},
    Volume = {57},
    Number = {2-3},
    Pages = {239--241},
    Year = {1996},
    Publisher = {Springer Netherlands, Dordrecht; Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw},
    Language = {English},
    DOI = {10.1007/BF00370834},
    MSC2010 = {03C05 08B10},
    Zbl = {0857.03016}
    }

  34. D. Vaggione, “Varieties in which the Pierce stalks are directly indecomposable,” J. Algebra 184 (2) p. 424–434, art. no. 0268 (1996). [DOI] Zbl 0868.08003
    [ BibTeX ]
    @Article{zbMATH00930150,
    Author = {Diego {Vaggione}},
    Title = {{Varieties in which the Pierce stalks are directly indecomposable}},
    FJournal = {{Journal of Algebra}},
    Journal = {{J. Algebra}},
    ISSN = {0021-8693},
    Volume = {184},
    Number = {2},
    Pages = {424--434, art. no. 0268},
    Year = {1996},
    Publisher = {Elsevier (Academic Press), San Diego, CA},
    Language = {English},
    DOI = {10.1006/jabr.1996.0268},
    MSC2010 = {08B05 08A30 08B26},
    Zbl = {0868.08003}
    }

  35. D. J. Vaggione, “Free algebras in discriminator varieties,” Algebra Univers. 34 (3): 391-403 (1995). [DOI] Zbl 0840.08008
    [ BibTeX ]
    @Article{zbMATH00836821,
    Author = {D.J. {Vaggione}},
    Title = {{Free algebras in discriminator varieties}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {34},
    Number = {3},
    Pages = {391--403},
    Year = {1995},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/BF01182095},
    MSC2010 = {08B20 08C15},
    Zbl = {0840.08008}
    }

  36. D. J. Vaggione, “Locally Boolean spectra,” Algebra Univers. 33 (3): 319-354 (1995). [DOI] Zbl 0821.08001
    [ BibTeX ]
    @Article{zbMATH00759385,
    Author = {D.J. {Vaggione}},
    Title = {{Locally Boolean spectra}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {33},
    Number = {3},
    Pages = {319--354},
    Year = {1995},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/BF01190703},
    MSC2010 = {08A30 03C20 08B26},
    Zbl = {0821.08001}
    }

  37. D. J. Vaggione, “Sheaf representation and Chinese Remainder Theorems,” Algebra Univers. 29 (2): 232-272 (1992). [DOI] Zbl 0772.08005
    [ BibTeX ]
    @Article{zbMATH00064762,
    Author = {Diego J. {Vaggione}},
    Title = {{Sheaf representation and Chinese Remainder Theorems}},
    FJournal = {{Algebra Universalis}},
    Journal = {{Algebra Univers.}},
    ISSN = {0002-5240; 1420-8911/e},
    Volume = {29},
    Number = {2},
    Pages = {232--272},
    Year = {1992},
    Publisher = {Springer (Birkh\"auser), Basel; University of Manitoba, Department of Mathematics, Winnipeg},
    Language = {English},
    DOI = {10.1007/BF01190609},
    MSC2010 = {08B26 06E15 08A45 08A30 06D30},
    Zbl = {0772.08005}
    }